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S1  Uncertainty 

 

The uncertainty is a fundamental property of scientific data values, and it expresses a state of limited 

knowledge where it is impossible to exactly describe the existing state (e.g. Drosg, 2009). Uncertainties 

can be estimated for a single measurement and for multiple measurements of the same object. The 

present work uses the uncertainty of single measurements, which is limited by the precision of the 

spectrometer, along with other factors that might affect the ability to make the measurement. 

Calculations with these uncertainties are performed with the best and worse-case scenarios (upper-

lower bounds method). 

Multiple measurements can be analysed with probability distribution functions. The uncertainty 

may be defined by the range around the best estimate with a 100% confidence (maximum uncertainty). 

The best estimate can be defined as an average value, and the standard deviation (standard 

uncertainty) represents the 1 confidence interval (i.e. about 68.27% for a Gaussian distribution). Most 

publications about the reliability of Raman band peak position estimations include this statistical method 

to define uncertainties, and do not consider precision of the spectrometer. In addition, probability 

distribution functions are also used in a completely different context for Raman spectra, i.e. mainly to 

reproduce the morphological properties of Raman bands. For example, the peak position of a Raman 

band is 50 times estimated with a specific best-fit probability distribution function, and these peak values 

are submitted to a statistical analysis, resulting in a best estimate (average) and a calculated uncertainty 

(confidence interval). 

 

Reference 

 

Drosg M (2009) Dealing with uncertainties, a guide to error analysis, Springer, Heidelberg. 
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S2  Probability Distribution Functions in the software LabSpec 5, 6 and PeakFit 
 
 
S2.1  Gaussian function (normal distribution) 

 
Software LabSpec defines the parameters p (peak position), a (peak amplitude), and w (full width at 
half maximum, FWHM) 

 

𝑦𝐺𝑎𝑢𝑠𝑠 = 𝑎 ∙ 𝑒𝑥𝑝 [−4𝑙𝑛2 ∙ (
𝑥−𝑝

𝑞
)

2
]      (1) 

 
where a is maximum amplitude, p is centre position, q = w (= FWHM) 

 
 
 
 
 
 
 
 
 
 
 
 
Figure S1. Example of a Gaussian function 
with geometrical definitions of the parameters 
(a = 1000, p = 1000, q = 100, w = 100, FWHM 
= 100). 

 
 

 
 
 
 
Alternative and equivalent definition (e.g. PeakFit v4.12, SYSAT Software Inc.): 
 

𝑦𝐺𝑎𝑢𝑠𝑠 = 𝑎0𝑒𝑥𝑝 [−1

2
(

𝑥−𝑎1

𝑎2
)

2
]       (2) 

 
where a0 is maximum amplitude, a1 is centre position, and a2 is distance between 
inflection point and centre position (i.e. width). 

 

𝐹𝑊𝐻𝑀 = 2√2𝑙𝑛2 ∙ 𝑎2       (3) 
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S2.2 Lorentzian function (Cauchy distribution) 

 
Software LabSpec defines the parameters p (peak position), a (peak amplitude), and w (full width at 
half maximum, FWHM) 
 

𝑦𝐿𝑜𝑟𝑒𝑛𝑡𝑧 = 
𝑎

1+ 4(
𝑥−𝑝

𝑞
)
2        (4) 

 
where a is maximum amplitude, p is centre position, q = w (= FWHM) 
 

 
 
 
 
 
 
 
 
 
 
Figure S2. Example of a Gaussian function 
with geometrical definitions of the parameters 
(a = 1000, p = 1000, q = 100, w = 100, FWHM 
= 100). 
 

 
 
 
Alternative and equivalent definition (e.g. PeakFit v4.12, SYSAT Software Inc.): 
 

𝑦𝐿𝑜𝑟𝑒𝑛𝑡𝑧 = 
𝑎0

1+ 43(
𝑥−𝑎1
2𝑎2

)
2        (5) 

 
where a0 is maximum amplitude, a1 is centre position, and a2 is distance between 
inflection point and centre position (i.e. width). 

 

𝑎2 = 1

6
√3 ∙ 𝐹𝑊𝐻𝑀        (6) 

 
 
  



Ronald J. Bakker  Supporting Information 

 4 

S2.3  Combination Gaussian-Lorentzian function (symmetric) 

 
Software LabSpec defines the parameters p (peak position), a (peak amplitude), and w (full width at 
half maximum, FWHM) and g (Gaussian contribution) 
 
LabSpec reference manuals do not provide any definition of mixed Gaussian and Lorentzian functions. 
A simple summation of fractions of individual distribution functions that have the same a, p, and w 
values can be deduced from manual analyses of spectra. 
 
 

𝑦𝐺𝐿 = 𝑔 ∙ 𝑦𝐺𝑎𝑢𝑠𝑠 + (1 − 𝑔) ∙ 𝑦𝐿𝑜𝑟𝑒𝑛𝑡𝑧     (7) 
 
 
the parameter g is the Gaussian fraction in the combined function (value between 0 and 1) 
 
 
 
Alternative, but not equivalent definition (e.g. PeakFit v4.12, SYSAT Software Inc.): 
 
 

𝑦𝐺𝐿 = 𝑎0

[
 
 
 
𝑎3√𝑙𝑛2

𝑎2√𝜋
𝑒𝑥𝑝(−4𝑙𝑛2(

𝑥−𝑎1
𝑎2

)
2
) + 

1−𝑎3

𝜋𝑎2[1+4(
𝑥−𝑎1
𝑎2

)
2
]

𝑎3√𝑙𝑛2

𝑎2√𝜋
 + 

1−𝑎3
𝜋𝑎2

]
 
 
 

    (8) 

 
where a0 is maximum amplitude, a1 is centre position, a2 is FWHM, and a3 is the fraction 
of Gaussian (value between 0 and 1). Note that the definition of the a2 parameter is 
different from the a2 in a single Gaussian and a single Lorentzian function. 

 
 
 
This function can be summarized as: 
 
 

𝑦𝐺𝐿 =

𝑎3√𝑙𝑛2

𝑎2√𝜋
𝑦𝐺𝑎𝑢𝑠𝑠 + 

1−𝑎3
𝜋𝑎2

𝑦𝐿𝑜𝑟𝑒𝑛𝑡𝑧

𝑎3√𝑙𝑛2

𝑎2√𝜋
 + 

1−𝑎3
𝜋𝑎2

      (9) 

 
 
 
Comparison of both functions (7 and 8): 
 

a distribution curve constructed with a3 = 0.5 (half Gaussian and half Lorentzian) 
according to PeakFit v4.12 corresponds to g = 0.596 in the LabSpec 5 and 6 software. 

 
  



Ronald J. Bakker  Supporting Information 

 5 

S2.4  Asymmetric Gaussian-Lorentzian function (LabSpec 6) 

 
Software LabSpec defines the parameters p (peak position), a (peak amplitude), w (peak full width at 
half maximum, FWHM), g (Gaussian contribution), and t (asymmetry factor) 
 
 

𝑦𝑎𝐺𝐿 = 𝑔 ∙ 𝑦𝑎𝐺𝑎𝑢𝑠𝑠 + (1 − 𝑔) ∙ 𝑦𝑎𝐿𝑜𝑟𝑒𝑛𝑡𝑧    (10) 
 
 
LabSpec reference manuals do not provide any definition of asymmetric mixed Gaussian and 
Lorentzian functions. Detailed analyses of the peak fitting application reveal that the symmetric 
functions are split in two halves (left and right of the centre position at p). Each half has the same 
maximum amplitude (a), but different FWHM. 
 
 

In symmetric functions:  𝑤 =  𝑞 =  𝐹𝑊𝐻𝑀     (11) 
 

𝛾 = 1

2
· 𝑞 =  1

2
· 𝐹𝑊𝐻𝑀    (12) 

 
 
 
New definition in asymmetric functions: 
 

right part (x > p)  𝛾𝑟𝑖𝑔ℎ𝑡 =  1

2
∙ 𝑞𝑟𝑖𝑔ℎ𝑡     (13) 

 

left part (x < p)  𝛾𝑙𝑒𝑓𝑡 =  𝑡 ∙ 𝑞𝑟𝑖𝑔ℎ𝑡     (14) 
 
 
 
Real peak width at half maximum: 
 

𝐹𝑊𝐻𝑀 =  𝛾𝑙𝑒𝑓𝑡 + 𝛾𝑟𝑖𝑔ℎ𝑡 =  (1

2
+ 𝑡) ∙ 𝑞𝑟𝑖𝑔ℎ𝑡     (15) 

 
Symmetric functions are defined with t = 0.5 
 
 
It should be noted that the parameter w is not equal to the FWHM, a mistake in the LabSpec 6 reference 
manuals: 
 

𝑤 =  𝑞𝑟𝑖𝑔ℎ𝑡 =  
𝐹𝑊𝐻𝑀

 12+𝑡
       (16) 
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S2.5  Asymmetric Gaussian function (LabSpec 6) 

 

Right part:  𝑦𝑎𝐺𝑎𝑢𝑠𝑠 = 𝑎 ∙ 𝑒𝑥𝑝 [−4𝑙𝑛2 ∙ (
𝑥−𝑝

𝑞
)

2
]    (17) 

 

Left part:  𝑦𝑎𝐺𝑎𝑢𝑠𝑠 = 𝑎 ∙ 𝑒𝑥𝑝 [−4𝑙𝑛2 ∙ (
(𝑥−𝑝)

2𝑡𝑞
)

2
]   (18) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure S3. Example of an asymmetric 
Gaussian function with geometrical definitions 
of the parameters (a = 1000, p = 1000, q = 150, 
t = 0.3333, FWHM = 125). 
 

 
 
 
 
 

S2.6  Asymmetric Lorentzian function (LabSpec 6) 

 

Right part:  𝑦𝑎𝐿𝑜𝑟𝑒𝑛𝑡𝑧 = 
𝑎

1+ 4(
𝑥−𝑝

𝑞
)
2     (19) 

 

Left part:  𝑦𝑎𝐿𝑜𝑟𝑒𝑛𝑡𝑧 = 
𝑎

1+ 4(
(𝑥−𝑝)

2𝑡𝑞
)
2     (20) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure S4. Example of an asymmetric 
Lorentzian function with geometrical definitions 
of the parameters (a = 1000, p = 1000, q = 150, 
t = 0.3333, FWHM = 125). 
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S2.7  Asymmetric Logistic function (PeakFit v4.12) 

 
 

𝑦 =  𝑎0 [1 + 𝑒𝑥𝑝 (−
𝑥 + 𝑎2𝑙𝑛𝑎3 − 𝑎1

𝑎2
)]

−𝑎3−1

𝑎3
−𝑎3(𝑎3 + 1)𝑎3+1𝑒𝑥𝑝 (−

𝑥 + 𝑎2𝑙𝑛𝑎3 − 𝑎1

𝑎2
) 

 
           (21) 
 

where a0 is maximum amplitude, a1 is centre position, a2 is related to the width, and a3 is the 
shape definition (>0). 

 
 
 
 
 
 
 
 
 
 
 
 
Figure S5. Example of an asymmetric Logistic 
function with geometrical definitions of the 
parameters (a0 = 1000, a1 = 1000, a2 = 30, a3 = 0.5, 
FWHM = 133.58). 
 
 

 
The symmetric logistic function is obtained by the shape definition a3 = 1 
 

𝑦 =  𝑎0 [1 + 𝑒𝑥𝑝 (−
𝑥−𝑎1

𝑎2
)]

−2
4 𝑒𝑥𝑝 (−

𝑥−𝑎1

𝑎2
)   (22) 

 
 
Alternative and equivalent definition: 
 

𝑓(𝑥) =  
𝑒𝑥𝑝(−

𝑥−𝑎

𝑏
)

𝑏 [1+𝑒𝑥𝑝(−
𝑥−𝑎

𝑏
)]

2      (23) 

 

inflexion points at:  𝑥 = 𝑎 ± 𝑙𝑛(2 + √3) ∙ 𝑏   (24) 

 

FWHM = 2 ∙ 𝑙𝑛(3 + 2√2) ∙ 𝑏     (25) 

 
 
 
 
 
 
 
 
Figure S6. Example of a symmetric Logistic 
function with geometrical definitions of the 
parameters (a0 = 1000, a1 = 1000, a2 = 30, FWHM 
= 105.76). 
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S3  Spectrometer calibration of the LabRAM 300 and LabRAM HR Evolution 

 

The transformation of a pixel number in the diode array of the detector to wavelength is calibrated with 

two parameters: 1. the position of the zero order of diffraction (0.0 nm); 2. the number of nm moved per 

motor step of rotation of the gratings by measuring a standard (either a known Raman shift or an atomic 

emission line). In other words, the general calibration method of the LabRAM system is a two-point 

fitting analysis with a linear interpolation which is reflected by these two parameters. The position of the 

zero order is defined by the parameter “zero” or “offset shift” in the software LabSpec 5 and 6, 

respectively, and it corresponds to the number of steps between the switch of the mechanical reference 

of the motor that drives the rotation and the position of 0 nm (i.e. zero order). Figure S7 illustrates that 

approximately 5 pixels are involved in the signal of the zero order in both systems. The LabRAM 300 

system has a pixel resolution of 0.1393 nm at the zero order with the 600 mm-1 gratings (Fig. S7a) and 

the LabRAM HR Evolution 0.01105 nm with the 1800 mm-1 gratings (Fig. S7b). The pixel with the 

highest intensity is roughly optically estimated in a first approach, and subsequently positioned in the 

centre of a spectral window. It is recommended by Horiba to have this band position within ± 1 pixel of 

0 nm (visual determination). The accuracy can be improved by estimation of the centre position with a 

symmetrical Gaussian-Lorentzian function. The latter procedure is performed by the automatic 

calibration option in LabSpec 6. Earlier versions of LabSpec offer the possibility to perform manually 

this fitting procedure. An example of the sensibility of the zero position to “offset shift” number is 

illustrated by a shift of 0.022 nm per 5 steps in the LabRAM 300 system with an 1800 mm-1 gratings, 

which is about half the size of one pixel. 

 

 
 

Figure S7. Spectra of the zero order (in wavelength, nm) of the LabRAM 300 system (a) and the LabRAM 
HR Evolution system (b). The pixel resolution (pixel res.) of the latter system is approximately improved 
by a factor ten. “zero” and “offset” numbers are instrument specific values. (c) Spectrum of the Nd-YAG 
laser (in relative wavenumber, cm-1) obtained with the LabRAM 300 system. The coefficient (coeff.) is 
experimentally determined using a reference Raman band with a known relative wavenumber. The thick 
solid lines are symmetrical Gaussian-Lorentzian best-fit curves. 

 

Subsequently, the Raman shift of silicon (Stokes scattering,  = 520.7 ± 0.5 cm-1), laser excitation 

wavelength (Rayleigh scattering,  = 0.0 cm-1; Fig. S7c), or an atomic emission lines (e.g. neon) is 

used to define the number of nm moved per motor step of the Sinus Arm Drive (i.e. "koeff" or "coeff" in 

LabSpec 5 and 6, respectively). The automatic calibration procedure allows the definition of only one 

specific Raman band as a relative wavenumber; therefore, neon lines must be recalculated in a virtual 

Raman shift number. For example, the 638.29914 nm neon line is transformed to 135.7462 cm-1 shift 

with the He-Ne laser (excitation laser wavelength 632.816 nm). The measured neon line or a reference 

Raman band is always positioned in the centre of a spectral window in the automatic calibration 

procedure. Similarly to the zero order, the peak position of the signal is determined with a symmetrical 

Gaussian-Lorentzian distribution function. Finally, a measurement session can start with the estimated 

“offset shift” and “coeff” values. 
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S4  Uncertainty of gratings rotation in the calibration procedure 

 

Automatic estimated peak positions of reference Raman bands in the calibration procedure of the 

LabSpec software are seldomly equal to the predefined values (Table S1). The LabSpec software 

allows a manual correction of “coeff” parameter to be able to reproduce accurate wavelength values. 

For example, the 540.05616 nm neon line is initially estimated at 540.0510 nm, as defined by a 

Gaussian-Lorentzian best-fit peak and a coefficient of 0.002019020. This position (540.0562 nm, “First” 

in Table S1) is only obtained after manual fine-tuning of the coefficient to 0.002019029. This example 

illustrates that a relatively small difference in the coefficient (ca. 10-8) may shift the initial detection of 

wavelength with 5 pm. 

After the calibration procedure, rotation of the gratings forth and back, relocating the same 

spectral window position affects the reproducibility of the reference peak position (“Second” in Table 

S1). For example, a fine-tuned calibration of the 630.47893 nm neon line with the LabRam 300 results 

in a peak position of 630.479 nm, however after gratings rotations this position is modified to 630.493 

nm (i.e. “First” and “Second” in Table S1). This deviation corresponds to ca. 0.35 cm-1 wavenumber. 

The Sinus Arm Drive is not able to provide a sufficiently smooth movement to relocate the gratings with 

equal constant values. Peak positions of the same neon line calibrated with the newer LabRAM HR 

Evolution system may shift up to 3 pm, which is a significant improvement of the mechanical accuracy 

of the Sinus Arm Drive in more modern systems. Nevertheless, the Sinus Arm Drive adds an extra 

source of uncertainty in the estimation of calibrated peak position of Raman bands. 

 

 

Table S1. Calibration of several neon lines (calibration references) according to the initial calibration 

procedure of the Raman spectrometers (Automatic), fine-tuned coefficients with highly accurate 

wavelengths (First), and the uncontrolled shift after rotation of the gratings with the Sinus Arm Drive 

(Second). See text for further details. 

 

 

 Laser 
 

Gratings 
(mm-1) 

Calibration 
reference 
(nm) 

Automatic 
(nm) 

Coefficient 
(fine-tuned) 

First 
(nm) 

Second 
(nm) 

LabRAM 300 Nd-YAG 1800 630.47893 630.487 0.00429046 630.479 630.493 

LabRAM HR 

Evolution 

 

 

He-Ne 1800 653.28824 653.262 0.00201911 653.2889 653.2858 

He-Ne 600 753.57739 753.589 0.006057263 753.5784 753.5668 

Nd-YAG 1800 540.05616 540.051 0.002019029 540.0562 540.0553 

He-Ne 1800 650.65277 650.642 0.002019090 650.6522 650.6564 
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S5  Laser wavelength calibration 

 

The well-defined He-Ne laser is selected to test the calibration procedures described in paragraph 6.3 

to determine the wavelength of the laser (Fig. S8). The one-point calibration (see paragraph 6.1) is 

performed with the 638 neon line (Fig. S8a). This relatively distant neon line is located at about +5.5 

nm higher wavelength than the laser, consequently it is expected to obtain slightly deviating values of 

the laser wavelength. The laser wavelength is estimated at values between 632.816 and 632.820 nm, 

with a mode at 632.816 nm according to multiple settings with variable positions of the spectral window. 

Subsequently, the laser wavelength is estimated with the proper bracketing technique using a best-fit 

linear correction through four adjacent neon lines: 626, 630, 633, and 638 (Fig. S8b). The laser signal 

is approximately positioned in the centre of the spectral window. The calibrated wavelength of the He-

Ne laser varies between 632.813 and 632.818 nm and is averaged at 632.816 ± 0.003 nm. Repetition 

of this procedure over several weeks resulted in similar values. In conclusion, the He-Ne laser 

wavelength in the LabRAM HR Evolution system is reproduced with the modified bracketing technique 

with a variability of 3 pm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S8. Spectrum of Rayleigh scattering of the He-

Ne laser (632.816 nm) and two adjacent neon emission 

lines (638 and 640) in the Stokes scattering range (a), 

and with two adjacent neon lines (626, 630, 633, and 

638) on either side in both the Stokes and anti-Stokes 

scattering range (b) by positioning the neon lamp 

behind the edge filter. See text for further details. 

 

 

An example of Nd-YAG laser wavelength determination is illustrated in Figure S9. The reported values 

given in the text and figures are only valid to this example due to the variability of the laser wavelength. 

The one-point calibration method (see paragraph 6.1) using the 534 neon line results in calibrated 

wavelengths between 532.044 to 532.048 nm (Fig. S9a). The 533 neon line that is closer positioned to 

the laser can also be used for the one-point calibration, resulting in a calibrated wavelength of 532.036 

to 532.045 nm (Fig. S9b). This relatively weak neon line cannot be detected with the use of an edge 

filter and is mainly observable by positioning the neon lamp behind the edge filter. The relatively low 

intensity of the 532, 533, and 534 neon lines may prevent any reliable Gaussian-Lorentzian peak fitting 

results, and it may introduce relatively large uncertainties in peak positions. The use of neon lines closer 

to the Rayleigh scattering result in lower calibrated wavelengths, and the best approach results in a 

wavelength of ca. 532.035 nm. The variability of the laser wavelength is evidenced with similar 
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calibration procedures with the same instrument settings performed in the same laboratory after several 

days (532.055 to 532.058 nm), or weeks (532.090 to 532.102 nm, mode at 532.100 nm). 

The proper bracketing technique (see paragraph 6.2) to calibrate the wavelength of the Nd-

YAG laser involves six adjacent neon lines: 529, 530, 532, 533, 534, and 534a (Fig. S9b). The resulting 

calibrated wavelength varies significantly according to individual measurement sessions and is affected 

by variable room conditions. For example, a calibrated wavelength of 532.059 ± 0.005 nm could not be 

reproduced the following day, that revealed wavelengths of 532.113 ± 0.006 nm. Each session has a 

laser wavelength reproducibility of about 6 pm, i.e. approximately twice as much as the uncertainty of 

the He-Ne laser. The examples illustrate that the Nd-YAG laser must be experimentally determined 

before any measurement session, and that it is very unlikely that it has a constant wavelength over 

longer periods of investigation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S9. (a) Spectrum of the Rayleigh 

scattering of the Nd-YAG laser and three 

adjacent neon emission lines (534, 534a and 

540) in the Stokes scattering range that can be 

used for the one-point calibration procedure. (b) 

the same spectrum after positioning the neon 

lamp behind the edge filter with six neon lines on 

both sides of the laser wavelength that can be 

used for calibration with the proper bracketing 

technique (Eq. 1 and 2). 
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S6  Spectral window internal irregularities 

 

The estimated peak positions of neon lines and Raman bands with Gaussian-Lorentzian best-fit 

probability distribution functions are significantly affected by their relative position in a spectral window 

(Fig. S10, S11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S10. Raman band of silicon and neon emission 

lines in two spectra recorded in different spectral window 

position: a. 532.111 nm; and b. 549.661 nm. The silicon 

band is bracketed and calibrated by the 540.05616 nm 

and 556.27662 nm neon lines. This setup is used to 

determine the variability in peak position. Raman 

system: LabRAM HR Evolution, Nd-YAG laser, 600 mm-

1 gratings, 70 mm confocal hole. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S11. Shift in the detected peak positions of neon 

emission lines 659.89528 nm (a) and 534.10938 nm (b) 

dependent on their position within a single spectral 

window. The position is specified in absolute wavelength 

and in a relative number. The latter is defined by the 

relative position of the neon line within a spectral window 

(in nm): 0 is the centre position, positive values 

represent lines that appear to the right site, and negative 

values to the left site 
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S7  Best-fit probability distribution functions 

 

The variation in peak position estimation according to multiple PDF’s decreases if the pixel resolution 

is increased by using a larger line density of the gratings (1800 mm-1 in Fig. S12a) and if more pixels 

are involved in the shape definition by using a larger focal length (Fig. S12b). The 574 neon line is 

detected by about 6 pixels with the LabRAM 300 (1800 mm-1 gratings) (Fig. S12a). All best-fit PDF have 

similar shapes, but the peak position may still vary significantly between 1398.220 cm-1 (Gaussian) to 

1398.406 cm-1 (asymmetric Gaussian-Lorentzian). The Lorentzian curve result in the most deviating 

intensity values and must be regarded an unreliable shape reproduction of this neon line. The LabRAM 

HR Evolution with 1800 mm-1 gratings detects the 650 neon line within 12 pixels (Fig. S12b). The 

variation in peak estimation according to different PDF is decreased to about 0.03 cm-1, i.e. from 

433.192 cm-1 (Gaussian) to 433.208 cm-1 (asymmetric Gaussian-Lorentzian). This variation is similar to 

the variability that resulted from the precision of the laser wavelength (632.816 ± 0.001 nm), 

corresponding to a wavenumber variability of ± 0.025 cm-1. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S12. (a) Various PDF fitted to the 574 neon 

line analysed with the LabRAM 300 system (1800 

mm-1 gratings). (b) Gaussian (black curve) and 

Lorentzian (green curve) distribution curves fitted 

to the 650 neon line with the LabRAM HR Evolution 

system. Peak positions (in cm-1) of various PDF’s 

are given in the included box. 
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S8  Wandering neon emission line 

 

The 633 neon line is analysed with a Nd-YAG laser (532.13 nm) in the LabRAM HR Evolution system 

and is shifted systematically to lower relative wavenumbers with increasing wavelength of the spectral 

window position (Fig. S13), i.e. the reversed effect compared to Figure 12b (with a He-Ne laser). The 

minimum step size of the gratings rotation is 0.002 nm (“coeff” parameter 0.002019074), and only 4 

steps are included in one cycle due to a pixel resolution of 0.209 cm-1. The symmetric and asymmetric 

Gaussian-Lorentzian best-fit curves reveal a gently wavy appearance, and corresponding peak 

positions are within the uncertainty of SMT, both at the upper and lower end of the error bars. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S13. Relative wavenumber of the peak 

position of the 633 neon line as a function spectral 

window position. 

 

  



Ronald J. Bakker  Supporting Information 

 15 

S9  Comparison with literature: Methane 

 

The calibrated peak positions of CH4 within the fluid inclusions illustrated in Figure 13 and the 

relationship to CH4 density are inconsistent with any equation published in literature. To illustrate this 

controversy, the density of the 0.3461 g·cm-3 fluid inclusion (Fig. 13a) is calculated at 0.300 ± 0.007 

g·cm-3 with the equations from Sublett et al. (2020) Moreover, the experimental data in literature reveal 

a large variability, and inconsistent relationship between density and Raman shift. The discrepancies 

were recognized by Lu et al. (2007), Lin et al. (2007), Shang et al. (2014), Zhang et al. (2016) and 

Sublett et al. (2020). The simple addition or subtraction of an arbitrary number 0 was suggested to 

equalize different data sets (Zhang et al., 2016; Lu et al., 2007), that reveal similar trends (slope) in the 

relationship between CH4 Raman band and density (or pressure). Sublett et al. (2020) merely 

“corrected” their experimental data to obtain similar values as Lin et al. (2007). These studies do not 

adequately address the cause of the variation. Mathematical equations given by Lin et al. (2007), Shang 

et al. (2014), and Sublett et al. (2020) have no general application to fluid inclusion studies as they are 

instrument specific, i.e. they cannot be applied to Raman systems other than the ones that are used in 

these studies. The equation for the difference between CH4 Raman bands “near zero” density and the 

measured shift (D) from Zhang et al. (2016) can also not be used in fluid inclusion research because D 

values between -3 cm-1 and -7.2 cm-1 can be assigned to multiple densities within the relatively large 

interval 0.11 to 0.53 g·cm-3. For example, a D value of -5 cm-1 corresponds to a density of 0.1962 g·cm-

3 and 0.4850 g·cm-3. It must be noted that D equations always need an extra estimation, i.e. a 

hypothetical constant value of 0 to be able to calculate a density from a specific Raman shift.  

The main causes of inconsistent data sets are highly underestimated uncertainty of individual 

measurements and partly insufficient calibration procedures, as described in the preceding paragraphs. 

Reproducibility, i.e. the average and standard deviation of multiple measurements of the same Raman 

band is often mistaken for the uncertainty in individual measurements (De Bièvre, 2008; Drosg, 2009). 

The CH4 Raman bands measured with different Raman systems in the present study reveal consistent 

peak positions and it is expected that similar calibration procedures applied to previously work would 

have resulted in a consistent data set, and a uniform equation of the relationship between Raman band 

peak position of CH4 and density, however, with a much larger error as indicated in previous 

publications. 
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S10  CO2 density estimation of fluid inclusions 

 

At room temperature, the fluid inclusions in Figure 16 contain an aqueous phase and a homogeneous 

CO2-rich phase. Microthermometry reveal melting temperatures of CO2 at -56.6 ˚C in the presence of 

ice and CO2-clathrate. The CO2 phases in the fluid inclusion in Fig. 16a homogenize at +12.6 ˚C in the 

vapour phase. Despite optical difficulties to estimate this temperature, cycling experiments with the use 

of metastability due to nucleation difficulties in cooling systems result in an uncertainty of ±0.1 ˚C (i.e. 

best value of a heating-freezing stage). CO2-clathrate dissolution occurs at + 9.9 ˚C (Q2 melting) 

(Bakker, 1997). The density of the homogeneous CO2 phase can be directly calculated with the equation 

of state from Span and Wagner (1996) that was adapted for fluid inclusion work in the programs Loner18 

and LonerSpW in the software package FLUIDS (https://fluids.unileoben.ac.at) (Bakker, 2003) for pure 

CO2 phases at 0.1477 ± 0.0006 g·cm-3 (298 ± 1 cm3·mol-1). The low concentration of H2O in the vapour 

bubble, i.e. 0.001 mole% at room temperatures is assumed to have a negligible effect on Raman peak 

properties of CO2. Fluid inclusion in Fig. 16b reveals a homogenization of CO2-rich phases at +9.3 ˚C 

in the liquid phase in the presence of a CO2-clathrate and an aqueous liquid solution. The clathrate 

dissolves completely at +10.1 ˚C. The CO2 liquid and vapour phases homogenize at +6.2 ˚C to a liquid 

phase in the metastable absence of CO2-clathrate and in the presence of only an aqueous liquid 

solution. The dissolution and homogenization behaviour of this fluid inclusion in a heating experiment 

corresponds to settings described in Diamond (1992) and Bakker (1997), and its fluid properties can be 

modelled with the program “NOSALT” and “CURVES” in the package “Clathrates” (Bakker, 1997). The 

density of the homogeneous CO2 phase can be directly modelled with the homogenization temperature 

in the metastable absence of a clathrate using the same programs Loner18 and LonerSpW: 0.8880 ± 

0.0007 g·cm-3 (49.56 ± 0.03 cm3·mol-1). This vapour phase contains 0.4 mole% H2O at the clathrate 

dissolution temperature and is considered to behave as a pure CO2 phase. 
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S11  Comparison with literature: Carbon Dioxide 
 

Calibrated CO2 Raman bands and corresponding densities are compared to the purely empirical 

equations presented in previous publications (Table S2). A large variety of the Fermi diad distance is 

calculated for a measured density of 0.1477 g·cm-3 (fluid inclusion Fig. 16a): from 102.828 to 103.202 

cm-1. Vice versa, the density that is calculated with numerous equations presented in literature using a 

calibrated Fermi diad of 103.123 cm-1 is varying between 0.1238 and 0.2623 g·cm-3, corresponding to 

a relative difference up to 78% (Table S2a). The calculated densities for the 0.8880 g·cm-3 fluid inclusion 

(Fig. 16b) vary to an even larger extend, from 0.7517 to 0.9463 g·cm-3 (Table S2b). The main causes 

of these differences are already elucidated for the CH4 examples, and include inadequate calibration 

methods and underestimated uncertainties of individual measurements. Raman systems that were 

calibrated with reference Raman bands of naphthalene, benzonitrile, and diamond do not provide 

simultaneously recorded CO2 spectra (Kawakami et al., 2003; Yamamoto and Kagi, 2006; Wang et al., 

2011; Remigi et al., 2021). These studies ignore the uncertainty of the reference values: for example 

±0.29 to ±0.49 cm-1 for naphthalene, and ±0.39 to ±0.98 cm-1 for benzonitrile (McCreery, 2000). The 

inferred uncertainty of the Fermi diad based on these reference bands does not allow the estimation of 

an accurate equation to define peak positions within the wavelength range detected by one pixel. These 

uncertainties often exceed pixel resolutions, for example ca. 1.5 cm-1 in Kawakami et al. (2003), 

Yamamoto and Kagi (2006); ca. 1 cm-1 in Wang et al. (2011).  

 

Table S2a. Comparison of density and Fermi diad distances of the fluid inclusion illustrated in Figure 16a 
with published purely empirical equations. Pressure in fluid inclusion at 22 °C is 5.21 MPa. 

 
Reference Fermi diad at 

0.1477 g/cm3 
density at 
103.123 cm-1 

density difference 

cm-1 g/cm3 g/cm3 

Rosso and Bodnar (1995) 103.048 0.1779 +0.0302 (20%) 

Kawakami et al. (2003) 102.828 0.2623 +0.1146 (78%) 

Yamamoto and Kagi (2006) 102.868 0.2339 +0.0862 (58%) 

Song et al. (2009) 103.033 0.1864 +0.0387 (26%) 

Wang et al. (2011) 103.103 0.1559 +0.0082 (6%) 

Fall et al. (2011) 103.035 0.1843 +0.0366 (25%) 

Lamadrid et al. (2017) 103.008 0.1887 +0.0410 (28%) 

Wang et al. (2019) eq. 3 103.182 0.1255 -0.0222 (15%) 

Wang et al. (2019) eq. 2 103.113 0.1507 +0.0030 (2%) 

Le et al. (2019), a 103.186 0.1238 -0.0239 (16%) 

Le et al. (2019), c 103.202 0.1242 -0.0235 (16%) 

Sublett et al. (2019) 103.043 0.1836 +0.0359 (24%) 

Remigi et al. (2021) 103.060 0.1849 +0.0372 (25%) 

 

Line segment normalization with simultaneously recorded neon lines (cf. Fig. 2b) was performed by 

Lamadrid et al. (2017), Wang et al. (2019)a. Line segment calibrations are only able to correct the 

difference between two Raman bands, e.g. the Fermi diad. The upper and lower CO2 band was 

bracketed with two neon lines by Lamadrid et al. (2017), whereas Wang et al. (2019) use two neon lines 

both at higher relative wavenumbers than the upper CO2 band, i.e. outside the wavenumber range 

where the Fermi diad occurs. The two methods resulted in significantly different density estimations 

 
a Footnote: Wang et al. (2019) contains many typographical errors in the definition of parameters: the minus signs are 
missing for the parameters a14, a16, a19, a22, a26, and a29 in their equations 2 and 3. 
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(Table S2). Moreover, Wang et al. (2019) provide two inconsistent equations to calculated density from 

the Fermi diad distance (e.g. 103.123 cm-1, Table S2a): 0.1255 g·cm-3 using temperature (Eq. 3 in Wang 

et al., 2019), and 0.1507 g·cm-3 using pressure (Eq. 2 in Wang et al., 2019). Both equations can be 

used assuming that the fluid inclusion in Figure 16a contains at 22 ˚C a CO2-rich vapour bubble with an 

internal pressure of 5.21 MPa (calculated with Span and Wagner, 1996). The calibration method of a 

specific Raman band according to Lin et al. (2007) was used by Fall et al. (2011) and Sublett et al. 

(2020), using two neon lines that bracket the Fermi diad, and both studies reveal similar results. 

However, both the upper and lower band of CO2 are corrected with equal values according to this 

method (cf. paragraph 4 “Calibration method bazar”), i.e. a correction value defined at the centre 

between the two neon lines (1031.42 and 1458.58 cm-1). Consequently, the Fermi diad is not affected 

by these corrections, which correspond to the assumption of a “linear offset” of the monochrometer. 

Unfortunately, Fall et al. (2011)] and Sublett et al. (2020) do not provide equations for the relationship 

between individual upper or lower CO2 band peak positions and density or pressure. 

 

Table S2b. Comparison of density and Fermi diad distances of the fluid inclusion illustrated in Figure 16b 
with published purely empirical equations. Pressure in fluid inclusion at 22 °C is 14.38 MPa. 

 
Reference Fermi diad of 

0.8880 g/cm3 
density of 
104.709 cm-1 

density difference 

cm-1 g/cm3 g/cm3 

Rosso and Bodnar (1995) 104.891 0.8149 -0.0731 (8%) 

Kawakami et al. (2003) 104.558 0.9463 +0.0583 (7%) 

Yamamoto and Kagi (2006) 104.604 0.9240 +0.0360 (4%) 

Song et al. (2009) 104.772 0.8639 -0.0241 (3%) 

Wang et al. (2011) 104.773 0.8654 -0.0226 (3%) 

Fall et al. (2011) 104.773 0.8649 -0.0231 (3%) 

Lamadrid et al. (2017) 105.093 0.7517 -0.1363 (15%) 

Wang et al. (2019) eq. 3 104.844 0.8349 -0.0531 (6%) 

Wang et al. (2019) eq. 2 104.853 0.8343 -0.0537 (8%) 

Le et al. (2019), a 104.846 0.8362 -0.0518 (6%) 

Sublett et al. (2019) 104.836 0.8396 -0.0484 (5%) 

Remigi et al. (2021) 104.541 0.9484 +0.0604 (7%) 
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