Do we grow old before tluid inclusions leak measurable amounts of substance?
or how to play with diffusion models
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Fluid Inclusions

Perfect Diffusion = Matter is transported from one part of a system to another as a result of
 random” molecular motions. In a dilute solution each molecule behaves
independently of the others and is constantly undergoing collision with fi
the solvent molecules. As a result it moves without preferred direction P
(,random walk”).There is a net transfer from the higher to the lower
concentration side as a result of this ,,random walk”
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Not-so-perfect Diffusion =  Heterogeneous system: diffusing material is a fluid phase and S| | P | Solubility (i.e. concentration) of “HyO”
diffusion medium is a solid phase, connecting two fluid reservoirs = % ! in quarts also depends on pressure.
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Even-less-perfect Diffusion = unknown identity of the diffusing species

unknown solubility of fluid phase in diffusion medium Concentration of "H;0” in quartz depends on the

fugacity in the agjacent reservoir, as long as quartz
is undersaturated in “H,O”
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concentrations can be measured after experimentation. Most lzkely value of D =10"*4 m*-s™ (or less) Distance r; / au.

Package “Fluids”: computer program ReqDif

2 R, J. Bakker, 20049

New software for calculating the fluid composition/fugacity and density of inclusions, that have been affected by bulk-diffusion processes

hitp:/fluids.unilecben_ac_at

Fugacity calculation according to highly accurate equations of state (mainly modified Helmholtz energy functions)

. . e o e . . . ReqDif
Fluid mixtures: H,O - CO, - CH, - NaCl. Specification possibility of both fluid inclusions and pore fluids 4 |
Software Package Fluids, v.2
Selection possibilities: - Variable sizes and pOSitiOnS Of ﬂUld inCIUSiOnS 1n grain Three-dimensional diffusion model to characterize bulk diffusion of fluid
_ Variable grain Size components in minerals with randomly distributed fluid inclusions
- difoSiOn Coefﬁcient fOI' eaCh ﬂllld Component Bakker, Ronald J. (2009) Reequilibration of fluid inclusions: bulk diffusien.
- partitioning coefficient of fluid components and direct calculation of the corresponding solubility in quartz es

- time
Compositions can be expressed in mass%, amount-of-substance% (as), or molality (as per kg H,O)

Fugacity gradients and pressure gradients that have resulted from diffusion are calculated in the program

from Ayllon et al. (2003) Geotluids, v.3, 4

Free download  http://fluids.unileoben.ac.at/Computer.html
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() Fluid Inclusion Properties 3 Pore Fluid Properties - Diffusion

Fluid Inclusion r Pore Fluid, new external fluid conditions r Diffusion Parameters

Eguation of State Fluid Phase Equation of State Fluid Phase Radius quartz grain 5000 W diffusion mode

B B Radius fluid inclusion 10 Hm
Haar et al. (1984): pure H20 (0 to 1000 C) _ Haar et al. (1984): pure H20 (0 to 1000 C)

: . _ _ Distance center fluid inclusion - surface quartz grain = 100 i
_ Span and Wagner (1996): pure CO2 {-57 to 827 () ) Span and Wagner (1996): pure CO2 {-57 to 827 ()

") Setzmann and Wagner (1991): pure CH4 (-183 to 352 “C) ) Setzmann and Wagner (1991): pure CH4 (-183 to 352 *C) Diffusion Coethicents in mZ2/s)  Fartitioning C.oeMclent K (n pmol/MFa per mol 3
= _ H.0 le-17 0.5172 = 40.00133 pmole / mol 5i {in gtz)
) Anderko and Pitzer (1993): H20-NaCl mixtures’ fe) Anderko and Pitzer (1993} H20-NaCl mixtures’ :

co

.

? Bakker ({1999), Holloway (1977): HZ20-CO2 mixtures : Bakker (1999), Holloway (1977): H20-CO2 mixtures H

) Duan et al. {1995, 2003): H20-CO2-CH4-NaCl mixtures® ) Duan et al. {1995, 2003): H20-C02-CH4-NaCl mixtures* NaCl

retf. ® for temperatures = 300 C and < 1000 TC ret. *tor temperatures > 300 Cand < 1000 C

Time 100000 seconds 0.0031688 Years

Fugacity (MPa) e mass % Fugacity (MPa)

fod mass % : : : : -
s 28.1276 as % H,0 100 Fluid Inclusion Properties after Diffusion

.  molality ' '
molality - . ! CO, ¢ calculate !

- as ¥ = amount-of EH#.

as % = amount-of / ot SR ) 0/ : . "
& iiuncs nieantage substance percentage @ mass % mass % Fugacity gradient™ (MPa)

"mole” nercentanel ; (‘mole” percentage) NaCl
B SRS 35 % HED 89.228064 1.179606

“temperature is fixed in previous window (Fluid Inclusion Properties)

Molar Volume 50| cm?/mol @in C R CH, - -
Molar Volume 70 EI’T"IE,-"WIC” substance percentage

(“mole" percentage) MaCl 10.77136 0.0015783

{ calculate ) Internal Pressure: 107.4729 MPa ﬁ-calculate.i Pore Pressure: 3
Molar Volume 54.16733 cm? /mol

Internal Pressure 96.83083 MPa

: Pressure gradient® 4.160844 MPa EE————
continue continue

*gradients = inclusion - pore




